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FOREWORD

The Advanced Materials Laboratory, Inc., under contract N60921-88-C-0063,
performed a variety of tests on a P55 gr/Al 6061T-6 metal matrix composite panel
supplied by the Naval Surface Warfare Center. These tests established the specimen
shape, configuration, and other testing methods to be used for future tests in this
program.
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SECTION 1

INTRODUCTION

A variety of tests were performed on a P55 gr/Al 6061T-6 metal matrix
composite panel # G5123 supplied by the Naval Surface Warfare Center. These tests
established the specimen shape and configuration and other testing methods to be
used for future tests in this program. The types of tests performed were:

1. Volume fraction of the graphite fibers in the metal matrix.

2. Density of graphite fiber determination.

3. Effect of a bent specimen upon the elastic modulus.

4. Tab shape and size for optimal tensile testing results.

5. Specimen shape for optimal tensile testing results.
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SECTION 2

DISCUSSION

VOLUME FRACTION AND DENSITY OF GRAPHITE FIBERS

The volume fraction of graphite fibers was determined by analyzing micro-
graphs of the cross section of P55 gr/Al MMC. Results showed a 40 percent volume
fraction of graphite in an aluminum matrix. By weighing and measuring a prismatic
bar of the MMC, the graphite density was determined to be 1.96 grams/cc. These
results agree with values given by John Foltz, Reference 1. For graphite single
crystals, the density is 2.25 grams/cc.

MODULUS OF ELASTICITY

The modulus of elasticity for the P55 gr/Al MMC was calculated to be 22 mil-
lion psi at half the ultimate tensile strength of the composite. This is due to the fact
that the aluminum deforms plastically and thus has a negligible contribution to the
elastic modulus of the MMC. Experimental results were close to that value. Bent
specimens will lower the measured elastic modulus due to the contribution of
straightening out the test specimen during a tensile test. The effect of bent speci-
mens is shown in Figure 3.

TENSILE TESTS

Specimens were tested that had dog-boned configurations and straight sides.
Also, the tapered aluminum tabs had either the same width as the specimen at the
point of attachment, or a larger width than the specimen. The dog-boned specimens
with a 1-inch radius of curvature, according to ASTM Standard D3552-77, Refer-
ence 2, had the highest average ultimate tensile strength of 82.3 ksi. Here, the stress
concentration increased the stress by 5 percent over the nominal stress at the point of
tangency between the 1-inch radius of curvature and the straight sides of the
specimen. Fracture initiated at that point with a crack which then propagated
parallel to the fibers to the tabs, and then continued roughly parallel to the tabs.
Despite the method of crack propagation, the ultimate tensile strength is determined
at the point of crack initiation. Thus, the actual ultimate tensile strength of the
MMC was about 86.4 ksi. The modulus of elasticity was averaged about 18.2 million
psi. which is somewhat below the 22 million psi that was calculated theoretically.
This is probably due to the fact that the specimens were made from sheet material
that had been bent during shearing with a paper cutter at the Naval Surface Warfare
Center.

Straight-sided specimens with flush tabs were also tested. Here the tab width
was the same as the specimen. The ultimate tensile strength was 82 ksi, which was
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practically the same as that of the dog-boned specimens. The modulus of elasticity
was 21.7 million psi which is very close to that calculated theoretically.

Straight-sided specimens with tabs having a greater width than that of the
specimens were also tested. The tensile strength averaged 72.3 ksi which is a
reduction of that of the flush tabs. This is probably due to the stress concentrations
created by the edge of the tab extending on either side of the specimen.

Dog-boned specimens with a radius of curvature of 1/4 inches were also tested.
Here, again, the average tensile strength was 72.6 ksi which is below that of the
1-inch radius of curvature. Here, the stress concentration was calculated to give
stresses 12 percent above the nominal stress.

Because of these results and the greater simplicity of manufacture of straight
sided specimens versus dog-boned 1-inch radius of curvature specimens, future
tensile tests will be performed using straight sided specimens with flush tabs.

4
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SECTION 3

TESTS

VOLUME FRACTION OF GRAPHITE FIBERS

The volume fraction of graphite fibers were determined by obtaining a cross
section of the metal matrix composite. Since this composite had continuous fila-
ments of graphite, a cross section could be used to determine the volume fraction.
The average diameter of the fibers were measured, see Figure 1. This average value
was 9.61 microns (micrometers) resulting from 10 measurements. There were 67
fibers in the micrograph for a total area viewed of 10150 square microns. The region
viewed was identified as the composite region. From Figure 2, one can see that the
composite region is in the center of the metal matrix composite, bounded on the
outside by aluminum containing no fil Brs. This region is identified as the aluminum
region. The area of the aluminum region was 0.421 square millimeter in Figure 2 as
determined by the use of a planimeter. The total area of the metal matrix composite
(MMC) is 2.574 square millimeters. By using Equations (1) and (2) below, the volume
fraction of graphite fibers was found.

Let: A(gr) = cross-sectional area of fibers in Figure 1

A(com) = total area of composite in Figure 1

A(Al) = aluminum region in Figure 2

A(tot) -= total area of MMC in Figure 2

d = average diameter of graphite fiber, Figure 1

N = number of graphite fibers in Figure 1

f(gr) = volume fraction of graphite in the MMC

A(gr) = 3.14159 x d x d x N / 4(1)

A(gr) x [ A(tot) - A(Al) ]
fAgr) = (2)

A(com) x A(tot)

f(gr) = 40 percent

5
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DENSITY OF GRAPHITE FIBERS

The density of the graphite fibers was determined by measuring and weighing a
prismatic sample of the P55 Gr/A1 MMC. Equation (3) was used to calculate the
density of the fibers.

Let: L = length = 2.330 inches
t = thickness = 0.04624 inch
w = width = 0.3245 inch
W = weight = 1.378 grams ( + or - 0.002 grams)
D(gr) = density of graphite fibers
D(Al) = density of aluminum = 2.70 grams/cc.
D(gr) = W/[L x t x w x f(gr)] - [1 - f(gr)] x D(Al)]/f(gr)(3)
Density of fibers = 1.96 grams/cc

THEORETICAL MODULUS OF ELASTICITY

The modulus of elasticity of the MMC was determined theoretically by
assuming that the elastic modulus of the P55 graphite fibers was 55 mllion psi. To
determine the force required for at the yield stress of the aluminum,

Let: A = cross-sectional area of MMC
E(Al) = elastic modulus of aluminum
E(gr) = elastic modulus of graphite fibers
E = elastic modulus of the metal matrix composite
F = tensile force (load)
S(A1) = stress in aluminum below yielding

For uniaxially oriented fibers,

F = [ f(Al) + f(gr) x E(gr) / E(Al) ] A x S(Al) (4)
F = 1,117 pounds

for E(A1) = 10.0 million psi, Reference 3.
E(gr) = .55 million psi for pitch 55
S(A1) = 35 ksi at room temperature, Reference 3.
A = 0.0114 square inches

Below the yield stress of the aluminum,

E = E(A1) x f(AI) + E(gr) x f(gr)(5)
E = 28 million psi

Above the yield stress of the aluminum, the contribution to the overall modulus
due to the aluminum is so small that,

E = E(gr) x f(gr)(6)
E = 22 million psi

7
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YOUNG'S MODULUS DUE TO A BENT SPECIMEN

When a specimen is bent, its measured elastic modulus in tension appears to be
lower than the true elastic modulus. If the bent specimen is assumed to be bent in a
circle, then the measured elastic modulus can be calculated from Equation (7). The
derivation of this equation is found in Appendix A.

Let: E(m) = measured elastic modulus
E = true elastic modulus of the MMC
L = length of the test specimen between the grips
S = stress in the test specimen
t = thickness of the test specimen
y = bending displacement at no load, i.e., the displacement

between the bent specimen and a straight one at its
midsection

32y

E(m)/E = 1-(7)
32 y + t [1 + 4L S/(Et)]

For the MMC specimen having a Young's modulus of 22 million psi and a span
of one inch, the ratio of measured modulus to that of the true modulus is shown in
Figure 3.

SPECIMEN CONFIGURATIONS

Figure 4 shows two types of specimens to scale. The first type, which appears at
the left, consists of a dog-boned shape specimen. This was machined using electrode
discharge machining (EDM). The radius of curvature was 1.00 inch between the
straight-sided 0.250-inch-wide middle portion of the specimen and the 0.350-inch-
wide end portions of the specimen. Each end was one inch long. This shape conforms
to ASTM Standards D 3552. Tabs of 5052-TO aluminum (annealed) were made such
that there was a 10-degree taper. The tab thickness was 0.062 inch and they had a
width of 0.350 inch and a length of one inch. The second type specimen was a
straight-sided specimen shown to the right in the figure. These were machined using
a fine cut end mill with final lapping on 600 silicon carbide paper on a glass plate.

Both types of specimens were bonded with the aluminum tabs. The tab width
was 0.250 inch for the straight-sided specimens. Bonding was done with two part
Miller-Stephenson Epoxy 907 with a bonding shear strength of 2500 psi or greater.
Curing was done at room temperature for 24 hours. Figure 5 shows bonded dog-boned
specimens, see the two left specimens in the photograph. Figure 6 shows bonded
straight-sided specimens. Figure 7 shows straight-sided specimens except that the
tab width was 0.350 inch. Figure 8 shows dog-boned specimens with a radius of
curvature of 0.250 inch at the end of the gauge length region.

8
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FIGURE 4. DOG-BONED AN 1) STRAIGIIr-EDGE SPECIMENS P55 GIVAL WITH ALUMINUM
TABS PRIOR TO ASSEMBLY
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FIGURE 5. P55 OR/AL 1)00-BONED I -INCII RAI)IUS, ESTED AT 293K
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FIGURE 6. P55 GIVAL. STRAIGHT SIDES, FLUJSH TABS, TESTED 295K
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FI1GURE~ 7. P55 GRIAl, STRAIGHT' SID)ES, LARGE TABS, 293K TESTS

FIGURE' 8. P55 GlUM, D)OG BONED) 1/4 INCH! RAI)IUS SPECIMENS
TESTED) AT 77K ANDI 293K
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TENSILE TESTING

Dog-Boned 1-Inch-Radius Tensile Specimens Tested at 293K

Tensile tests using dog-boned type specimens with one-inch radius, see Figure
4, are summarized in Table 1. The fractured specimens are shown in Figure 5. Note
that fracture began at the outer sides of the specimens where the radius of curvature
is tangent to the straight sides of the specimens. Here, the stress concentration
increases the stress by about 5 percent over the nominal stress, Reference 4. Because
of the high elastic energy stored in the curved portion from the point of fracture
initiation "initial crack 'to the tabs, this energy is relaxed by shear parallel to the
fibers. Thus, the crack then propagates parallel to the fibers until the crack meets
the tabs. Fracture then continues along or parallel to the tab.

The load-elongation curves for the tests are shown in Figures 9 through 14.
Elastic modulus measurements were made in the middle third of the elastic curve. In
each of the figures, the beginning position of the modulus measurement is shown as a
"b" while the end position is shown as an "in." The calculated modulus is the least
squares straight line fit of all data points between 'b" and "in." The average value of
the modulus is 18.2 million psi., while the ultimate tensile strength is
82.3 ksi in Figure 3. The true ultimate tensile strength is probably 5 percent higher
or about 86.4 ksi.

Straight Sides Tensile Specimens, Flush Tabs. Tested at 295K

Table 2 shows the results of tensile testing specimens with straight sides and
flush tabs. These type specimens are also shown in Figure 4. The fractured speci-
mens are shown in Figure 6. Here, the modulus of elasticity is 21.7 million psi while
the tensile strength is 82 ksi. Note how close the modulus is to the theoretically
calculated one of 22 million psi. This is quite close to the same results obtained from
the 1 inch radius dog-boned specimens. Figures 15 and 16 show the load elongation
curves for these specimens.

Straight Sides Tensile Specimens, Large Tabs. Tested at 293K

These specimens broke at the tabs as shown in Figure 7. The test statistics are
given in Table 3, while the load elongation curves are shown in Figures 17 through
22. Here, the elastic modulus averaged 18.3 million psi while the ultimate tensile
strength averaged 72.8 ksi. The reason for the lower tensile strength is due to the
stress concentrations caused by the larger tabs which create a sharp corner at the
edge of the specimen where the tab meets the specimen. Note the fracture along the
tab line.

Specimens With Large Tabs Tested at 77K

Figure 8 shows a dog-boned specimen with 9 1/4-inch radius of curvature tested
at 77K. This was test number 2 given in Table 4 and shown as Figure 23. Fracture
may have started either at the tab where there is a large stress concentration or at
the point where the curvature is tangent to the straight edge of the specimen. Here
the stress concentration was calculated to be about 12 percent higher stress than the
nominal stress. Test number I was a specimen with straight sides and large tabs.

14
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TABLE 1. P55 GRJAL DOG BONES I-INCH RADIUS, TESTED AT 293K

ADVANCED MATLS. LAB

Concord, MA

Tensile Test
Batch Number: P55 AI/gr.293K
Date: 08-18-88 Number of Specimens 6

Operator I.D.................... TA
Storage Disk No................ 1
Comments :...................... Dog bone specimen

TEST RESULTS

Tkick.IDii Width Peak Load U.T.Stnith 71d SRolth Yld Eloalg Irk Stagtb Irk ElonZ. Modulus berly
In In Lb PSI PSI % PSI % PSI FL-Lb

1 .06 020 9.47 0.6Ei2786.6290.I 0.4W, 78C.5Z0E402 0.43: 185.256E435 0.262
7 .06 .52 09.97 86.410C 863.4602 0.55.0 837.9144. 0.1445 l1.1981.45 0. 14

3 .4 .51 9206 792.0336.0: ?93.C3HO.0 0.030 793.03311+20 .430A 181.929E405 -3-244
4 0.045 0.^50 951.:71 112.131E+007 844.505E+!", 0.545 832.1311*02 1.48i I74.500fltS 0.:76
5 0.046 0.150 907.210 8I7..97E402 817.5570+02 0.445 817.9976.07 0.445 1912-141405 0.207
i 0.04? 0.449 284.452 W19l2+02 640.41.^E+6: 0. 39' Z 40.72E+0 0.391. 198.944 5 .,11

STATISTICS

.ear, G.046 0.:50 343.513 t03.440E+G07 374.330+02 0.46 8!9.1306t02 0.415 18. -4:"305 0.30e
Mi 0.045 0149 859.442 786.6".H-102 306.iH0 0.32: 765.Re06o02 0.35: 171,493E+1,5 %:207
Fix 0.0470 71 9192 ~ .7~0 ~.2E0 0.545 841.429E.0Z 0.545 1561251E,05 0.6i4
S'..v 0.00! 0.001 175.325 7198.001E*I 204.41101 0.061 :44.7112+01 0.053 962-396E#03 0.152
% C3?. 1.11.4 0.414 11.71.0 3.6240 3.624 13.14C Z.963 112.593 5.2179 49,42

TEST CONDITIONS
Crosshead Speed................... 0.1 In/Min
Load Cell Capacity :............. 5000 Lb
Threshold :........................ 5 % Of FSL
Break Criterion................... 95 %
Extensometer Used..................1 1:Y,0:N
Gage Length...................... 1.00 In
Action 0 End Of Test 1 ..... 3:St,0:Rtn
Crosshead Direction : 1.... 1:Up,0:Dn
l'ield(Zero,Of'fset) .............. 0.0 0:Z,1:Off
Offset, At Yield : .......... . %~

30
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TABLE 2. P55 GR/AL STRAIGHT SIDES, FLUSH TABS, TESTED 295K

ADVANCED MATLS. LAS'

Concord, MA

Tensile Test
Batch Number: P55 gr/A1.295K
Date: 09-02-88 Number of Specimens :2

Operator I.D.................... TA
Storage Disk No................ 1
Comments :...................... Straight sides & tab

TEST RESULTS

Tkjck.IDia Widti Peak Load U.T.Stngtb 71d Winth Yld Elong. Erk Stuglt Irk E1ohi. Kodulu; Energy
ID In Lb PSI PSI I PSI % P! I Ft-Lb

1 0.046 L.349 97:.03: 850.347Efo0 950.347.0: 0.384 77L751i.0z 0.543 i16.1I2Es0,* 0.96
3 0.045 C.:46 869.53: 790.381404 19.36H#021 0.303 741.303c 0.457 :11.195EiO5 0.670

STATISTICS

4ean 0.046 r1. i4 8 9.M.8 eo.25SE40: 81.350EM0 0.381 760. 41E,0'2 (-.500 "17.054s+05 0301
min 0.045 0.0046 883.53i 73C.;W01 7;0.3690. 0.363 7C.,306iPo 0.451 Z16.314Z065 M.70
Raw 0.046 0.449 M7.032 i50.34?E+C2 850.347R402 0.384 178.7571#02 0.543 'W.3951#05 0.905
St.Dev 0.000 0.000 58.336 4'4.I1SE4OI 434.I30i+0 0.001 Z64.946"40I CACo 482.'3SE102 6.:09
IC. V. 0.93 0.i71 6.1.67 5.170 5.170 0.21C 1-485, U.160 0.2:.3 :5.528

TEST CONDITIONS
Crosshead Speed :.................0.1 In/Mnm
Load Cell Capacity :............. 5000 Lb
Threshold :........................ 5 % Of FSL
Break Criterion :..................s0 %
Extensometer Used :............. .I 1:Y,0:N
Gage Length :.................. 1.00 In
Action * End Of Test 1 ..... 1:St,O:Rtn
Crosshead Direction :I... 1:Up,0:Dn
Yield(Zero,Offset) :........... .0.0 0:Z,1:Off
Offset At Yield :................. 0.2 %
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TABLE 3. P55 GR/AL STRAIGHT SIDES, LARGE TABS, TESTED AT 293K

ADVANCED MATLS. LAB

Concord, MA

Tensile Test
Batch Number: Al COMPOS.293K
Date: 04-03-87 Number of Specimens 6

Operator I.D.................... TA
SLorage Disk No............... 1
Comments :...................... Straight sides spec.

TEST RESULTS

Thick./Dil width Peak Load U.-Stngth Yid Stogth Yld Elong. Brk Stngtk Brb Elong. moduams Baergj
IIn Lb psi PSI % PSI % PSI Ft-Lb

1 0.045 0.2450 895.540 7S53.4140.02 1 99.414 1 #02 0.430 799.414E)02 0.430 182.852E+05 0.396
2 0.045 01.49 652.097 569.776E004 Z2007+0: 4.557 569.7158+02 0.4%5 142.13910S 1.648
3 .044 0.249 791.580 691.936E02 691.9361+024 0.302 662.457E.02 0.36? 2:7.6106.05 0.555
4 .045 0.250 857.465 761.1101.02 761.110E+02 0.426 761.110E+02 0.425 191.5 J1311 0.364

5 U.047 0.249 935.925 800.7931402 00.7930.02 0.544 SOC.793E.O2 0.544 158.U401+05 0.600
6 0.045 0.250 835.529 741.530E+02 742.5301+02 0.388 74:.5300. 0.380 193.4941405 0.146

STATISTICS

heaD 0.046 0.249 828.0:5 71.7.593E+02 665.938E+02 1.110 722,647F+62 0.036 182.774E405 0.518
min 0.045 0.249 652.-097 5Cj.77600 200.207E002 0.30" 5F,9.7761+0: 0.39 142.739E+05 0.146
KIT 0.047 0.250 935.925 800.7930.02 8000.793E402 4.567 800.793E.02 0.544 227.6101+06 1.64g

St.Dev 0.001 0.000 99.401 07..^44iE00 2.11.736i+02 1.696 904.337E+01 0.05:. 291.43C244 0.1429
% C3?. 1.589 0.173 12.00! 11.9 34.795 152.8215 12.514 14.121 16.273 E".612

TEST CONDITIONS
Crosshead Speed :................ .0.1 In/Mnm
Load Cell Capacity :............. 5000 Lb
Threshold.......................... 5 % Of FSL
Break Criterion :................. 95 %
Extensometer Used :.......... 1 1:Y,0:N
Gage Length :.................... 1.00 In
Action @ End Of Test : 1.... 1:St,0:Rtn
Crosshead Direction : . .. .. 1 1:Up,0:Dn
Yield(Zero,Offset) :............. 0.0 0:Z,1:Off
Offset At Yield :................ .0.2 %
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TABLE 4. P55 GR/AL METAL MATRIX COMPOSITES, TESTED 77K

ADVANCED MATLS. LAB

Concord, MA

Tensile Test
Batch Number: Al COMPOS.77K
Date: 04-05-87 Number of Specimens : 2

Operator I.D............TA
Storage Disk No................. 1
Comments :...................... A16061+ C P55 #G5123

TEST RESULTS

Thick./Dia VidUi Ptak Load U.T.Stlgtb Tid Winth Old Eloul. Brk Stngti Brk Elong. modulus hnerty

In In Lb PSI PSI % PSI % PSI Ft..Lb

1 0.046 0.250 903.135. 783.502D.02 658.5791W0 0.420 783.5021.02 0.314 205.4021.05 0.197
2 0.045 0.188 786,536 933.7461.02 709.204E+02 CAN2 9113.746143" 0.348 4,45.932.1105 C. 164

STATISTICS

Kenn 0.046 0.1 845.035 8.6248.02 683.891E02 0.427 858.62.0~2 0.1131 2451.6691+05 0.101
mn. 0.045 0.100 786.936 183.50O2Ef % 658.579., 0.4216 " 3.5021.02. 0.314 205.4021.05 0.164
Nat 0.046 0.250 903.135 933.746E4.12 709.204E400, 0.420 933.746E#02 0.348 285.9331#05 0.197
St.Dev 0.000 0.044 8.1.165 106.238E402 357.971.01 0.001 106.81.02 0.024 569.836104 0.0213
% C.Y. 12.018 19.990 9.723 12.373 5.21134 0.267 12.371, 7.349 23.179 112.071

TEST CONDITIONS
Crosshead Speed :................. 0.1 In/Min
Load Cell Capacity............... 5000 Lb
Threshold.......................... 5 % Of FSL
Break Criterion :................. 95 %
Extensometer Used :................1 1:Y,0:.N
Gage Length :..................... 1.00 In
Action 0 End Of Test : ..... 1 1:St,O:Rtn
Crosshead Direction : ...... 1 1:Up,0:Dn
Yield(Zero,Offset) :............. 1.0 1:Z,2:Off
Offset At Yield :................. 0.2 %
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Since the number of tests were small, no conclusion is drawn as to the elastic modulus
or tensile strength, although both appear higher than the room temperature tests.

Dog-Boned Tensile Specimens With 1/4-Inch Radius Tested at 293K

Figure 8 shows the dog-boned specimens that were tested at 293K. These specimens
are listed in Table 5 as tests 3, 4, and 6. The average elastic modulus was 22.8 million
psi, similar to that calculated theoretically. The ultimate tensile strength averaged
80.5 ksi, which is slightly lower than the 1-inch-radius dog-boned speci-
mens. However, there was much data scatter. Clearly, specimen number 6 which
broke in the gauge length had the highest ultimate tensile strength of 89.2 ksi.
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TABLE 5. P55 GR/AL DOG BONES 1/4-INCH RADIUS, TESTED 293K

ADVANCED MATLS. LAB

Concord, MA

Tensile Test
Batch Number: Al COMPOS.293Kj
Date: 04-03-87 Number of Specimens : 6

Operator I.D................... TA
Storage Disk No................. 1
Comments :...................... A16061+ C P55 #G5 123

TEST RESULTS

Thick./Dia Widtji Peak Load U.T.Stngth T14 SLrigth 714 Elong. Drk Stlntk Ork Slong. Modulus Energy
In In Lb PSI PSI %psi I PSI Ft-Lb

1 0.047 01250 108.62H+.01 930.4 10 794.593E.02 0.295 930.366.02 0.400 273.702E+05 0.481
0.047 0.242 866.434 740.3525. 53,1.938E+02 0.27?3 740.35:i.02 0.427 196.9755#05 0.226

3 0.047 0.180 637.857 724.9705.0:11 47.149E.02 4.150 721.9051416 0.432 231.3681.05 1.463
4 0.045 0.187 490.752, 564.384E+014 519.1725.02 0.234 564.384E40,1 0.1455 22..96(9485 0.08"
5 0.045 0.250 895.548 ?99.414Etoz 182.902E+02 0.002. 799.414E+06 0.407 230.5811.05 0.3SE
6 0.096 0.160 652.-097 091.818E0.02 1:.3665.02 4.564 89i.818DO02 0.453 2:9.841E+i5 1.640

STATISTICS

Mean 0.746 07214 7il.495 715.2119E04 431.687E+02 13600 774,7105t02 0.396 231.0725N45 0.718
Mnm C.045 0.160 49C.752 564.38A5t12 182.90:E+02 0.021 564.:645.02. 0.55 19i.955+01 0.085
Mal 0.04? 0.2.50 108.628E#01 930.436W.02 794.593E+02 4.561 53D.4361.02 0.453 273.702,1#05 1.040
St.Dev 0.D00 0.010 216.530 131.503E,02 227.840NZ0 2.141 131.743it02 0.071 46.1.63E+04 0.66G
I CJ. 1.734 18.787 26.066 16.903 52.779 133.851 17.005 18.048 10.657 92.176

TEST CONDITIONS
Crosshead Speed................... 0.1 In/Mnm
Load Cell Capacity : ............ 5000 Lb
Threshold :........................ 5 % Of FSL
Break Criterion................... .95 %
Extensometer Used :................. 1:Y,0:N
Gage Length :.................... 1.00 In
Action @ End Of Test : ..... 1 1:St,0:Rtn
Crosshead Direction : . .... 1 1:Up,0:Dn
Yield(Zero,Offset) :............. 1.0 1:Z,2:Off
Offset At Yield................... 0.2 %
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SECTION 4

SUMMARY

The volume fraction of the P55 gr/Al 6061- T6 metal matrix composite was
determined to be 40 percent graphite fiber in the aluminum matrix. This was
determined by analyzing micrographs of this material that was cross sectioned.

The density of the graphite fibers was determined to be 1.96 grams/cc., which
was calculated from the measured density of the composite and the volume fraction of
graphite fibers. This is lower than graphite single crystals that has a density of 2.25
grams/cc., Reference 5.

The modulus of elasticity of the MMC was theoretically calculated to be 28
million psi in the low stress region where the aluminum is elastic, and 22 million psi
at the high stress region where the aluminum deforms plastically.

For specimens that are bent, the modulus of elasticity that is measured is less
than that of a straight specimen. This is due to the straightening of the bent
specimen upon loading in tension. The contribution to the lowering of the modulus of
elasticity for bent specimens is shown in Figure 3.

The shape of tensile specimens influences the tensile strength as measured for
the MMC. Dog-boned specimens that conform to ASTM Standard D3552-77 result in
the highest tensile strengths as measured. However, straight-sided specimens result
in only a fraction of a percent lower stress than the dog-boned specimens. Tabs on
either end of the specimen tend to lower the tensile strength as measured if the tabs
are wider than the specimen. This will cause stress concentrations that will cause
fracture at a lower nominal stress. For dog-boned specimens with a radius of
curvature of 1/4 inch, stress concentrations created will lower the measured tensile
strength compared to specimens with a 1-inch radius of curvature.
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SECTION 5

CONCLUSIONS

The following conclusions are made:

1. Volume fraction of graphite fibers of MMCs can be made by using
quantitative metallography.

2. Density of graphite fibers can be obtained by weighing theMMC of
measured dimensions, and using the volume fraction of fibers determined from 1
above for calculations.

3. The modulus of elasticity of the MMC can be calculated by knowing the
pitch of the fibers, the modulus of elasticity of the metal matrix, and the volume
fraction of the fibers.

4. The measured modulus of elasticity is reduced when testing bent specimens
according to Figure 3.

5. Dog-boned tensile specimens that conform to ASTM Standard D3552-77
and straight-sided specimens give ultimate tensile strength values close to that of the
intrinsic material. However, the tabs should be soft aluminum with a taper and the
sides of the tabs should be the same as the specimen width where the end of the taper
contacts the specimen.
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SECTION 6

RECOMMENDATIONS

The following recommendations are made as a result of this work.

1. The fiber fraction and density should be determined using measuring
techniques including quantitative metallography.

2. Great care should be made not to bend specimens during manufacture in
order to obtain correct elastic modulus determinations.

3. Straight-sided specimens should be used due to the simplicity of manu-
facture. Results are close to those obtained with specimens made according to ASTM
Standard D3552-77.

4. Tabs should be made of soft aluminum with a taper of about 10 degrees
pointing toward the gauge length. The width of the tabs should be the same as that of
the specimen. The tabs should be epoxied onto the specimen.
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APPENDIX A
F

SPECIMEN--

b

Let: b = specimen width

E = true elastic modulus / I/L

E(m) = measured elastic modulus I

F = tensile force

L = 1/2 gauge length Ay y-Ay

AL = change in L

S = stress in specimen P

t = thickness of specimen

y = bending displacement of
specimen under no load

Ay = change in (y) due to force F.

R = radius of curvature of specimen
F

FIGURE A-1. GEOMETRY OF BENT SPECIMEN

4F(y - Ay)L2Ay =AY)L(8)

b E t 3

Ay = 1 4 L2  Y (9)-77S

R2 = L2 +[R_ (y Ay) 3 2  (10)

since y - Ay << L , then equation (10) reduces to:

y - AY = L (11)

Let: AL = Change in length L to straighten specimen completely
o from displacement (y).

A-1
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Let: AL = change in length L to straighten specimen completely
from displacement (y - Ay)

AL = 2 R [sinl-(7L)- L]

by Taylor series expansion and neglecting high order terms

AL L
0 3R2

com[.ning with equation (11), where Ay = 0 in this case,

2
AL _ y (12)

o 3 L

similarly

L=4 (y _ Ay)2 (13)1~ 3 L

AL = AL - ALI

substituting equations (12) and (13)

AL = -- [2yAy - (Ay)2 ] (14)

Let: c = strain

AL SC + (15)
- L 'E

combining equations (14) with (15)

= 2 [2yAy - (Ay)2 + (16)3L 2

combining equations (16) and (9)

E 4 y 2 [ L] S (17)
2 1

Et(
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differentiating equation (17) with respect to stress (S)

_E 1 t2( 1  4SL')5 (1L8)

since E(m) d

3 2y 
2

E(m)/E =1 32 y2 + t 2 [1 + 4L 2S/ (E t2)3](7
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